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Abstract. The graphica model learning is considered as a multiobjective
optimization problem and a genetic algorithm added with two stressors over the
exploration and exploitation capabilities (GML-2SGA) is presented here and
applied to obtain a Pareto front. To stress the exploitation of the GA a
Metropolis step is added to the genetic operators, and to stress the exploitation,
independent samples are taken from different combinations of the GA
parameter values. An experimental design is executed using benchmarks of
complexities sparse, medium and dense, generated with a Markov Model
Random Sampler (MMRS). It is compared to GMS-MGA, and the performance
is assessed using the mean number of cliques of the true model identified by the
algorithms. As results, the algorithm presented here identifies more cliques of
the true models than the one used to compare, in al complexity types, and the
complexity of the models made a difference in the performance of the
algorithms.

1 Introduction

A new paradigm known as Estimation of Distribution Algorithms (EDAS) in
Evolutionary Computation [12] [17] makes use of graphical model estimation and
selection (learning) to guide the search in the space of solutions in optimization
problems. This has made model estimation and selection an important tool in
Evolutionary Computation. However, graphical model selection is not an ease task.
The space of models grows exponentially with the number of variables, and there is
no polynomial time certificate for a model if one were available. So, one way to
tackle the problem is to construct a heuristic.

The genetic algorithm has been used to learn modelsin Poli and Roverato [19] and
Roverato and Paterlini [20]. In those papers the problem of learning a model was
considered as an optimization one, using the Akaike index as a simple criterion to
optimize. In Diaz and Ponce de Leon [6] the problem of learning models was
considered a multiobjective optimization one. The two objectives are (1) the fitting of
the model to the data measured by the Kullback-Leibler deviance, and (2) the
simplicity of the model, measured by the number of edges of the graph. The two
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objective functions are conflicting because the model that best fit the data is the one
represented by a complete graph, whose fitting is zero. As the number of edges
decrease the fitting grows. In Diaz and Ponce de Leon [6], a relative preference
vector is used to convert the multiple objectives into a single one. In Ponce de Leon
and Diaz [18] a Pareto front optimality criterion is used helped by a genetic algorithm
(GMS-MGA).

Evolutionary Computation algorithms in search need to balance the extension of
exploration of the space through recombination and mutation, with the extension of
exploitation through the selection operator. If the solutions obtained are exploited too
much, premature convergence is expected, but if too much stress is given on the
search, the information obtained so far is not properly used, the execution time is
enormous and the search exhibits a similar behavior to that of a random search. On
the other hand, it is known that the convergence of a MOEA agorithm to the Pareto
Front can not be assured by the performance of the genetic operators alone [5] [14].
This last author suggests introducing a Metropolis step to the genetic algorithm to
assure the convergence. This step is really alocal search stressor and the question is
how the balance between exploration and exploitation is affected. To solve this
problem, independent samples for a multistart method are used. Other related issueis
confronted: the difficulty to design the genetic operators in such a way that the
resulting offspring (a) is likely to inherit desirable properties of its parents, and (b) is
capable of improving on its parents solution quality. The GMS-MGA presented in
[18], fulfill the (@) part. In the present paper the mutation and the recombination
operators for discrete graphica models introduced in [6] and used in [18] are
modified to fulfill both parts (8) and (b). The class of Evolutionary Algorithms
obtained in this form could be put in the class of the some times called Memetic
Algorithms and some other times Genetic Local Search Algorithms [14]. But the
algorithm presented here is added with two stressors over the exploration and
exploitation capability of the genetic algorithm, so, it will be named Graphica
Markov Model Learning with atwo Stressed Genetic Algorithm (GML-2SGA).

2 Content

The content of the paper is:

(1) to define the graphical Markov model representation, (Section 3)

(2) to define the multiobjective graphical Markov model learning problem, (Section
4)

(3) to define the stressing methods used: Multi-start method and Metropolis step with
Boltzman distribution, (Section 5)

(4) to define the Graphical Markov Model Learning with a two Stressed Genetic
Algorithm (GML-2SGA), (Section 6)

(5) to perform an experiment to compare the two algorithms, GMS-MGA and GML-
2SGA (Section 7),

(6) to discuss the results and obtain conclusions (Sections 8, 9).
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3 TheGraphical Markov Model Class

In this section first, the graphical Markov model and its hypergraph representation are
defined, and second, the hypergraph operators to handle the models are defined.

3.1 The Graphical Markov Model Class

A graphicad Markov model consists of an undirected graph and a subclass of
probabilistic distributions for random variables that can be represented by this
undirected graph [13]. “Represented” means that the set of nodes of the graph are the
random variables, and that an edge between two nodes is absent, when theses two
random variables are conditionally independent given the rest of the variables in the
graph. The graph that has this last property (represent the structure of interactions of
the random variables) is known as Markov graph and the graph together with the
class of distributions is known as a probabilistic graphical Markov model.

In this paper only discrete binary random variables are considered, but the
probabilistic graphical model class used in this paper is unrestricted, meaning it that
every simple graph can be used to represent the probabilistic conditional
independences between the random variables of the probability model. In this type of
models, it is necessary to use some iterative algorithm to perform the parameter
estimation. In this paper a modification of the generalized iterative scaling [4] that
will appear soon, is used. The concepts, definitions and properties of graphical
models are taken from the book of Lauritzen [13].

3.2 Hypergraph Representation of a Discrete Graphical Markov model

The graphical models can be characterized by a set E= {E,,....E} of pair-wise
incomparable (w.r.t. inclusion) subsets from V, named the generating class, that is to
be interpreted as the maximal sets of permissible interactions [13].

To represent a graphical model in a convenient way a hypergraph structure is used.
A hypergraph is a collection of subsets, H = {Hl,Hz,...,Hk} named hyper edges,
of afinite set V of nodes of a graph. Each hyper edge corresponds to a clique of the
graph. This collection of subsets satisfies the same property as the generating class,
that is, they are pair-wise incomparable (w.r.t. inclusion) [2]. So, a one to one
correspondence can be established between the generating class E and the hypergraph
H.[13]

A discrete graphical Markov model can be represented by M = (H, P(X)) where H
isahypergraph and P(X) isa class of probability distributions [13].

The intersection between two hypergraphsH/, and H,, is the family of sets
intersections taking one hyper edge from each of the two hypergraphs,

Hl/\sz{hi/\hj,VhieHland‘v’hjeHz} 1
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This operation between two hypergraphs will be used in the next section to handle
with hypergraphs models.

3.3 Operatorsto Handle with Hyper graphs M odels

To handle with hypergraph models, different types of operators are needed.

The Nabla menus V- operator is a hypergraph used to define a unary operator over
ahypergraph. It is defined by two binary chains:

V- = (b,b), where b = (11110111 1), and where the number O is in the
positioni, and where b;=(1111101 1), where the number O isin the position j.

Intersecting Nabla menus with an hypergraph, the edge (i, j) is taken out of the
graph, that is,

V- AH is one edge less than H.

The Nabla plus is defined in a similar but more complicated way (See [6]). The
intersection of two hyper graphs is used as the crossover operator, and the Nabla
menus and Nabla plus operators are used as mutation operators to take an edge out
and to put an edgein, in agraph [6].

4 Multiobjective Graphical Markov Model Selection

4.1 Model Learning from Data: A Multiobjective Optimization Problem

Model learning from data problem is an optimization problem with two objective
functions. First, the learned model must be as near to the data sample as possible (best
fitting), and second, the model must be, as simple as possible to evade the over
fitting. Best fitting to the data means, that the Kullback-Leibler deviance [1], [11]
from the model to the sample is minimum. The Kullback-Leibler deviance from the
complete graph to the sample is null, but, at the same time this model contains al the
data noise. Objective functions for each of the tasks are needed, that is, an objective
vector function with two components must be considered. Let denote it as O= (O,
0O,). For the first task, the Kullback-Leibler divergence, or relative entropy is used,
and for the second task a measure of complexity, the number of edges, is used. The
problem is, to minimize the two elements of O. The two objective functions are
conflicting because the model that best fit the data is the complete graph, and the
Kullback-Leibler divergence grows when the edges number decreases.

Classical multiobjective optimization methods convert multiple objectives into a
single one by using a relative preference vector of preferences [6]. Unless a reliable
and accurate preference vector is available, the optimal solution obtained by such
methods is highly subjective. One way out of this problem is to use the Pareto
optimality. The Pareto optimality is based on the concept of dominance [5]. A model
is not dominated when there is no other model in a class that is better in all the
objectives. The subclass of non dominated models in a class is the Pareto front. The



Graphical Markov Model Learning with a Double-Stressed Genetic Algorithm ... 7

Pareto front is a solution set and not a single solution. So, a multiobjective
optimization problem requires multiple trade-off solutions to be found. The task is
then, to find as many different trade-off solutions as possible. A way to find many
different solutions is to use an Evolutionary Algorithm (EA) that works with a
population of solutions. This ability of an EA makes it unique in solving
multiobjective optimization problems. The ability of a Genetic Algorithm (GA) to
obtain multiple optimal solutions in one single simulation run makes it especially well
prepared to play an important role in finding the Pareto front.

In this paper a multi-start GA is used to generate as many different trade-off
solutions as possible, and then a multiobjective selection algorithm is used to obtain a
Pareto front. In order to use a GA, the hypergraph model representation, and the
operators to manipulate models defined in section 3 are used.

4.2. Objective Function Definition

L et define the components of the objective function O= (O, Oy).
The fitting function O, is defined based on Information Theory criteria[11], [14].
Let L(mM ‘x) be the likelihood ratio statistic for a sample of size n from a

multinomial distribution, where ;3 ‘x is the maximum likelihood estimate [3], [4],

[9] assuming that the true model isM . The log likelihood ratio in the multinomial
caseis

5 R m.M @)
G (M):logL(mﬂx)z—zzxilog i
X
1
Then the objective function to minimizeis:
(©)

2
0=(0,,0,) = (G~(M) I(M))
where [(M) is the number of edges of the model M.
Let
G2 (My)-G2 (M) 4
G2(M )

G(M M) =

where M isthe equiprobability model.
Let

v

where max/, isthe maximal number of edges formed with v vertices,
The aggregated convex fitting index for the model M isdefined asin [6] by
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CFIM) = p(G(M, M)+ (L- p)((v, M)) ®)

Thisindex is used as atool in the genetic algorithm.

5 Stressingthe GA

5.1 Multi-start Method

The multi-start method consists of a strategy for searching parts of the space, starting
from different initial solutions [10]. The objective of these methods is to avoid falling
in alocal optimum. These methods provide an appropriate tool to introduce diversity
to the population of the evolutionary algorithm. In this paper the objective of a multi-
start method is to visit different parts of the search space, widening the exploration.
The parameter values of the genetic algorithm are used to define the multi-start
method. Fixing the per cent selected to reproduce, the probability to mutate, and the
weight assigned to fitting against the simplicity of the models, the genetic algorithm
is repeated for each combination of values. (See Table No. 1). The exploitation is
widened when more values of the parameters are tested. The multi-start method was
tested with three values for each parameter (27 start points) and with two values for
each parameter (8 start points) and there was no difference in the results. So, the
method with two values for each parameter, were used to perform the full experiment.
For each combination of the parameters values, 5 random samples are generated. A
total of 40 independent samples are taken.

5.2 Metropolis Step and the Boltzman Distribution

The well-known Metropolis step is a fundamental part of the Simulated Annealing
(SA) algorithm. It was first introduced by Metropolis [16] to simulate the physical
annealing process of solids. With the same words of Metropolis, let E(X) be the
energy of a solid X, then the solid is perturbed, let E(X’) be the energy of the
perturbed solid and the objective of the algorithm is to accept a new state X' if its
energy E(X’) is lower than the energy E(X). The decision of accepting a new state is
made by the o, criterion defined as:

éE(X)j @)
a=exp ———
kT

where

SE(X) = E(X") - E(X) ®
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T denotes the temperature and k is the Boltzman constant. For k=1, at each T the
SA agorithm aims to draw samples from the Boltzman equilibrium distribution:

7, (x) o exp(=S(E(X))/ kT) ©

For the experiments performed in this research k=1 and T=1 are used.

6 Two Stressed Genetic Algorithm (GML-2SGA)

In this section a description and a pseudocode of the GML-2SGA algorithm and each
of its parts are given.

6.1 The Main Stressed Algorithm

The main stressed genetic algorithm is sketched in Algorithm 1.

To learn a graphic Markov model an approximate Pareto front is initialized and
updated at each step of the stressed genetic algorithm, to obtain after k generations a
list of models (the approximate Pareto front) that contains the approximate best model
for each number of edges. To diversify the searching part of the algorithm (stress
exploring), the genetic algorithm is added with a multi-start method that obtains a
sample with one of alist of genetic parameters combinations. The genetic populations
obtained are used to update the approximated Pareto front [5]. To stress the
exploitation part of the agorithm an M-step agorithm is added to the genetic
operators.

Algorithm 1. Main stressed GA (GML-2SGA)

begin
Initialize the Pareto Front
repeat
Initialize the diversity parameters
Choose an initial population
Calculate the number of edges and the fitness of
each model
repeat
Perform truncation selection for the population
i
Perform M-step crossover or mutation
Calculate the number of edges and the fitness
of each model
Actualize the Pareto front
until (Some stopping criterion applies (k
populations))
until (Multi-start parameters combination are over)
end
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6.2 TheM step Crossover and M utation Operators

The hybridized crossover and mutation operators include an M-Step. They leave the
class of graphical Markov models closed, and conserve (specialy the crossover
operator) the heritability of the common interaction structures of the parents.

Algorithm 2. M-Step crossover algorithm

begin
Select X, Y from Pop
repeat
Z&crossover (X, Y)
SE (Z|X,Y) €E(Z) -E(X,Y)
U€rand(0,1)
if (U< min{1l,exp(-8E(Z]X,Y))}) then Pop<Z
until (Some stopping criteria applies)
end

Algorithm 3. M-Step mutation algorithm

begin
Select X from Pop
repeat
Z<mutation (X)
SE (Z|X) €E(Z) -E (X)
U&rand (0,1)
if (U< min{1,exp(-8E(Z|X))}) then Pop€<Z
until (some stopping criteria applies)
end

Algorithm 4. M-step crossover or mutation

begin

With probability p select two parents: obtain an

offspring by crossover

Assess the offspring fitness

if (The offspring is not dominated by one of the
fathers)
then Add it to the new population
else Add it to the new population with M step

criterion for crossover

With probability 1-p select one parent: with

probability g take one edge out

Assess the offspring fitness

if (The child is not dominated by the father)
then Add it to the new population
else Add it to the new population with M step

criterion for mutation

With probability 1- g: put one edge in

Assess the offspring fitness

if (The child is not dominated by the father)
then Add it to the new population
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else Add it to the new population with M step
criterion for mutation
end

6.3 Algorithm Components Description

Multi-start estates: The parameter combinations of the genetic algorithm are used as
diversity factors. They are: © % of individuals selected to reproduce (25, 50); p % of
individuals selected to mutate (25, 45). Parameter of the convex index (0.60, 0.45)
Initial population: We form the initial population taking one edge out from the
saturated model. To attain this objective the Nabla menus operator is used. Then, § %
of the best evaluated modelsis taken to begin the genetic algorithm.

Fitting: The convex fitting criterion acts as the genetic algorithm fitness.

The Pareto front: for each number of edges, the best adjusted model is saved at
each population of the genetic algorithm.

In a random fashion the algorithm decides to do crossover with probability p or
mutation with probability 1- p. The crossover operation of two models is defined by
the binary intersection operator.

The mutation operator could take one edge out at random with probability 0.7
(using the operator Nabla menus) or put an edge in (using the operator Nabla plus) at
random with probability 0.3.

7 Experimental Design

To compare the two algorithms with models of different complexities [8], an
experiment was designed and run. A conditional independence restrictions structure
was selected at random of the type dense, mean and sparse. The structures are defined
by its cliques (See table 2). To asses the performance of the algorithms, simulated
samples from known models of 10 and 12 variables, sparse, medium and dense (see
Table 2), are generated with a Markov Structure Random Sampler (MSRS) presented
in[7].

Each algorithm is run 6 times with each type of model. The experiment and the
algorithm is programmed in C++ and executed in a Pentium 1V PC at 1.6 MHz.

Table 1. Starting values

Per cent Per cent to mutate Convex fitting
selected to index parameter
reproduce

25 25 0.60

50 45 0.45
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8 Resultsand Discussion

The mean execution time of the algorithm proposed in this paper is < 5.12 minutes for
10 variables, and < 14.28 minutes for 12 variablesin C++, over aPC at 1.6 GHz. The
sparse models are more difficult to identify because they have few edges, and are
immersed in a huge space like a“Needle in a Haystack”. The mean execution time for
dense modelsis 21 seconds more than for medium models in the case of 10 variables,
and 3.87 minutes more in the case 12 variables, indicating that the complexity of the
models make the computations time longer. Some explanation for that could be that
the independent sample sizes are not enough to produce convergence in more
complex models.

The performance of the GML-2SGA agorithm is better than the performance of
the GMS-MGA, in the case of the sparse and the medium models, in the case of the
dense model the performance are essentially the same (See Table No. 2).

Table2. GMS-MGA vs. GML-2SGA

M MODEL'S MAXIMAL CLIQUES GMS- GML- Mean
@] MGA 2SGA Run
D Correct  Correct  time
E Cligues Cliques

L Mean Mean

S

10 VAR. ABBC CD DE EFFG GHHI 1J 6.65 7.35 5 min.
SPARSE (9 cliques)

10 VAR. ABC CDE EFG GHI JA 3.95 4.92 491
MEDIUM (5 cliques) min.
10 VAR. ABCD DEFG FGHI HIJA 2.75 2.75 5.12
DENSE (4 cliques) min.
12VAR. ABBCCDDEEFFGGHHI I3JK 943 10.12 11.71
SPARSE KL (11 cliques) min.
12 VAR. ABC CDE EFG GHI IJK JKL 4.11 5.83 10.41
MEDIUM (6 cliques) min.

12 VAR. ABCD DEFG FGHI HIJK 1JKL 3.98 4.27 14.28
DENSE (5 cliques) min.
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9 Conclusions and Recommendations

The sparse models are more difficult to identify because they have few edges, and are
immersed in a huge space like a “Needle in a Haystack”. The GML-2SGA for binary
variables has a better performance than the GMS-MGA because the sparse models are
not more difficult to determine than the medium and dense ones as was the case with
the GMS-MGA. The medium complexity models are amost always completely
determined. The execution mean run time grows with the number of nodes (variables)
in the model and with the complexity (sparse, medium, and dense) of the graphical

model.
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