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Abstract. The graphical model learning is considered as a multiobjective 
optimization problem and a genetic algorithm added with two stressors over the 
exploration and exploitation capabilities (GML-2SGA) is presented here and 
applied to obtain a Pareto front. To stress the exploitation of the GA a 
Metropolis step is added to the genetic operators, and to stress the exploitation, 
independent samples are taken from different combinations of the GA 
parameter values. An experimental design is executed using benchmarks of 
complexities sparse, medium and dense, generated with a Markov Model 
Random Sampler (MMRS). It is compared to GMS-MGA, and the performance 
is assessed using the mean number of cliques of the true model identified by the 
algorithms. As results, the algorithm presented here identifies more cliques of 
the true models than the one used to compare, in all complexity types, and the 
complexity of the models made a difference in the performance of the 
algorithms. 

1   Introduction 

A new paradigm known as Estimation of Distribution Algorithms (EDAs) in 
Evolutionary Computation [12] [17] makes use of graphical model estimation and 
selection (learning) to guide the search in the space of solutions in optimization 
problems. This has made model estimation and selection an important tool in 
Evolutionary Computation. However, graphical model selection is not an ease task. 
The space of models grows exponentially with the number of variables, and there is 
no polynomial time certificate for a model if one were available. So, one way to 
tackle the problem is to construct a heuristic. 

The genetic algorithm has been used to learn models in Poli and Roverato [19] and 
Roverato and Paterlini [20]. In those papers the problem of learning a model was 
considered as an optimization one, using the Akaike index as a simple criterion to 
optimize. In Díaz and Ponce de Leon [6] the problem of learning models was 
considered a multiobjective optimization one. The two objectives are (1) the fitting of 
the model to the data measured by the Kullback-Leibler deviance, and (2) the 
simplicity of the model, measured by the number of edges of the graph. The two 
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objective functions are conflicting because the model that best fit the data is the one 
represented by a complete graph, whose fitting is zero. As the number of edges 
decrease the fitting grows. In Diaz and Ponce de Leon [6], a relative preference 
vector is used to convert the multiple objectives into a single one. In Ponce de Leon 
and Diaz [18] a Pareto front optimality criterion is used helped by a genetic algorithm 
(GMS-MGA).   

Evolutionary Computation algorithms in search need to balance the extension of 
exploration of the space through recombination and mutation, with the extension of 
exploitation through the selection operator. If the solutions obtained are exploited too 
much, premature convergence is expected, but if too much stress is given on the 
search, the information obtained so far is not properly used, the execution time is 
enormous and the search exhibits a similar behavior to that of a random search. On 
the other hand, it is known that the convergence of a MOEA algorithm to the Pareto 
Front can not be assured by the performance of the genetic operators alone [5] [14]. 
This last author suggests introducing a Metropolis step to the genetic algorithm to 
assure the convergence. This step is really a local search stressor and the question is 
how the balance between exploration and exploitation is affected. To solve this 
problem, independent samples for a multistart method are used. Other related issue is 
confronted:  the difficulty to design the genetic operators in such a way that the 
resulting offspring (a) is likely to inherit desirable properties of its parents, and (b) is 
capable of improving on its parents’ solution quality. The GMS-MGA presented in 
[18], fulfill the (a) part. In the present paper the mutation and the recombination 
operators for discrete graphical models introduced in [6] and used in [18] are 
modified to fulfill both parts (a) and (b). The class of Evolutionary Algorithms 
obtained in this form could be put in the class of the some times called Memetic 
Algorithms and some other times Genetic Local Search Algorithms [14]. But the 
algorithm presented here is added with two stressors over the exploration and 
exploitation capability of the genetic algorithm, so, it will be named Graphical 
Markov Model Learning with a two Stressed Genetic Algorithm (GML-2SGA).  

2   Content   

The content of the paper is:  
(1) to define the graphical Markov model representation, (Section 3)  
(2) to define the multiobjective graphical Markov model learning problem, (Section 
4) 
(3) to define the stressing methods used: Multi-start method and Metropolis step with 
Boltzman distribution, (Section 5)  
(4) to define the Graphical Markov Model Learning with a two Stressed Genetic 
Algorithm (GML-2SGA), (Section 6) 
(5) to perform an experiment to compare the two algorithms, GMS-MGA and GML-
2SGA (Section 7), 
(6) to discuss the results and obtain conclusions (Sections 8, 9). 
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3   The Graphical Markov Model Class 

In this section first, the graphical Markov model and its hypergraph representation are 
defined, and second, the hypergraph operators to handle the models are defined. 

3.1 The Graphical Markov Model Class 

A graphical Markov model consists of an undirected graph and a subclass of 
probabilistic distributions for random variables that can be represented by this 
undirected graph [13]. “Represented” means that the set of nodes of the graph are the 
random variables, and that an edge between two nodes is absent, when theses two 
random variables are conditionally independent given the rest of the variables in the 
graph. The graph that has this last property (represent the structure of interactions of 
the random variables) is known as Markov graph and the graph together with the 
class of distributions is known as a probabilistic graphical Markov model.  

In this paper only discrete binary random variables are considered, but the 
probabilistic graphical model class used in this paper is unrestricted, meaning it that 
every simple graph can be used to represent the probabilistic conditional 
independences between the random variables of the probability model.  In this type of 
models, it is necessary to use some iterative algorithm to perform the parameter 
estimation. In this paper a modification of the generalized iterative scaling [4] that 
will appear soon, is used. The concepts, definitions and properties of graphical 
models are taken from the book of Lauritzen [13].   

3.2 Hypergraph Representation of a Discrete Graphical Markov model 

The graphical models can be characterized by a set E= {E1,...,Ek} of pair-wise 
incomparable (w.r.t. inclusion) subsets from V, named the generating class, that is to 
be interpreted as the maximal sets of permissible interactions [13]. 

To represent a graphical model in a convenient way a hypergraph structure is used. 
A hypergraph is a collection of subsets, { }kHHHH ,...,, 21=  named hyper edges, 
of a finite set V of nodes of a graph. Each hyper edge corresponds to a clique of the 
graph. This collection of subsets satisfies the same property as the generating class, 
that is, they are pair-wise incomparable (w.r.t. inclusion) [2]. So, a one to one 
correspondence can be established between the generating class E and the hypergraph 
H. [13] 

A discrete graphical Markov model can be represented by M = (H, P(X)) where H 
is a hypergraph and P(X) is a class of probability distributions [13].  

The intersection between two hypergraphs 1H  and 2H , is the family of sets 
intersections taking one hyper edge from each of the two hypergraphs,  

{ }2121 , HhandHhhhHH jiji ∈∀∈∀∧=∧  (1) 
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      This operation between two hypergraphs will be used in the next section to handle 
with hypergraphs models. 

3.3 Operators to Handle with Hypergraphs Models 

To handle with hypergraph models, different types of operators are needed.  
The Nabla menus ∇- operator is a hypergraph used to define a unary operator over 

a hypergraph. It is defined by two binary chains: 
  ∇- = (bi,bj)’, where bi = (1 1 1 1 0 1 1 1 1), and where the number 0 is in the 

position i, and  where   bj = (1 1 1 1 1 0 1 1), where the number 0 is in the position j.  
Intersecting Nabla menus with an hypergraph, the edge (i, j) is taken out of the 

graph, that is,   
∇- ∧H is one edge less than H.  
The Nabla plus is defined in a similar but more complicated way (See [6]). The 

intersection of two hyper graphs is used as the crossover operator, and the Nabla 
menus and Nabla plus operators are used as mutation operators to take an edge out 
and to put an edge in, in a graph [6]. 

4   Multiobjective Graphical Markov Model Selection  

4.1 Model Learning from Data: A Multiobjective Optimization Problem 

Model learning from data problem is an optimization problem with two objective 
functions. First, the learned model must be as near to the data sample as possible (best 
fitting), and second, the model must be, as simple as possible to evade the over 
fitting. Best fitting to the data means, that the Kullback-Leibler deviance [1], [11] 
from the model to the sample is minimum. The Kullback-Leibler deviance from the 
complete graph to the sample is null, but, at the same time this model contains all the 
data noise. Objective functions for each of the tasks are needed, that is, an objective 
vector function with two components must be considered. Let denote it as O= (O1, 
O2). For the first task, the Kullback-Leibler divergence, or relative entropy is used, 
and for the second task a measure of complexity, the number of edges, is used. The 
problem is, to minimize the two elements of O. The two objective functions are 
conflicting because the model that best fit the data is the complete graph, and the 
Kullback-Leibler divergence grows when the edges number decreases.  

Classical multiobjective optimization methods convert multiple objectives into a 
single one by using a relative preference vector of preferences [6]. Unless a reliable 
and accurate preference vector is available, the optimal solution obtained by such 
methods is highly subjective. One way out of this problem is to use the Pareto 
optimality. The Pareto optimality is based on the concept of dominance [5].  A model 
is not dominated when there is no other model in a class that is better in all the 
objectives. The subclass of non dominated models in a class is the Pareto front. The 
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Pareto front is a solution set and not a single solution. So, a multiobjective 
optimization problem requires multiple trade-off solutions to be found. The task is 
then, to find as many different trade-off solutions as possible. A way to find many 
different solutions is to use an Evolutionary Algorithm (EA) that works with a 
population of solutions. This ability of an EA makes it unique in solving 
multiobjective optimization problems. The ability of a Genetic Algorithm (GA) to 
obtain multiple optimal solutions in one single simulation run makes it especially well 
prepared to play an important role in finding the Pareto front. 

    In this paper a multi-start GA is used to generate as many different trade-off 
solutions as possible, and then a multiobjective selection algorithm is used to obtain a 
Pareto front. In order to use a GA, the hypergraph model representation, and the 
operators to manipulate models defined in section 3 are used.   

4.2. Objective Function Definition 

Let define the components of the objective function O= (O1, O2).  
The fitting function O1, is defined based on Information Theory criteria [11], [14].  
Let )ˆ( xmL M

n
 be the likelihood ratio statistic for a sample of size n from a 

multinomial distribution, where xM
nm̂  is the maximum likelihood estimate [3], [4], 

[9] assuming that the true model is M . The log likelihood ratio in the multinomial 
case is 

   log2)(log)(2 ˆ
ˆ ∑−==
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Then the objective function to minimize is: 
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where l(M) is the number of edges of the model M. 
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where vlmax  is the maximal number of edges formed with  v  vertices. 

The aggregated convex fitting index for the model M  is defined as in [6] by 
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This index is used as a tool in the genetic algorithm.  

5   Stressing the GA 

5.1 Multi-start Method 

The multi-start method consists of a strategy for searching parts of the space, starting 
from different initial solutions [10]. The objective of these methods is to avoid falling 
in a local optimum. These methods provide an appropriate tool to introduce diversity 
to the population of the evolutionary algorithm. In this paper the objective of a multi-
start method is to visit different parts of the search space, widening the exploration. 
The parameter values of the genetic algorithm are used to define the multi-start 
method. Fixing the per cent selected to reproduce, the probability to mutate, and the 
weight assigned to fitting against the simplicity of the models, the genetic algorithm 
is repeated for each combination of values. (See Table No. 1). The exploitation is 
widened when more values of the parameters are tested. The multi-start method was 
tested with three values for each parameter (27 start points) and with two values for 
each parameter (8 start points) and there was no difference in the results. So, the 
method with two values for each parameter, were used to perform the full experiment. 
For each combination of the parameters values, 5 random samples are generated. A 
total of 40 independent samples are taken.  

5.2 Metropolis Step and the Boltzman Distribution  

The well-known Metropolis step is a fundamental part of the Simulated Annealing 
(SA) algorithm. It was first introduced by Metropolis [16] to simulate the physical 
annealing process of solids. With the same words of Metropolis, let E(X) be the 
energy of a solid X, then the solid is perturbed, let E(X’) be the energy of the 
perturbed solid and the objective of the algorithm is to accept a new state X’ if its 
energy E(X’) is lower than the energy E(X). The decision of accepting a new state is 
made by the α criterion defined as:  

⎟
⎠
⎞

⎜
⎝
⎛−=

kT
XE )(exp δα  

(7) 

where 

)()'()( XEXEXE −=δ  (8) 
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T denotes the temperature and k is the Boltzman constant. For k=1, at each T the 
SA algorithm aims to draw samples from the Boltzman equilibrium distribution: 

)/))((exp()( kTXExT δπ −∝  (9) 

For the experiments performed in this research k=1 and T=1 are used. 

6   Two Stressed Genetic Algorithm (GML-2SGA) 

 In this section a description and a pseudocode of the GML-2SGA algorithm and each 
of its parts are given.  

6.1 The Main Stressed Algorithm  

The main stressed genetic algorithm is sketched in Algorithm 1.  
To learn a graphic Markov model an approximate Pareto front is initialized and 

updated at each step of the stressed genetic algorithm, to obtain after k generations a 
list of models (the approximate Pareto front) that contains the approximate best model 
for each number of edges. To diversify the searching part of the algorithm (stress 
exploring), the genetic algorithm is added with a multi-start method that obtains a 
sample with one of a list of genetic parameters combinations. The genetic populations 
obtained are used to update the approximated Pareto front [5]. To stress the 
exploitation part of the algorithm an M-step algorithm is added to the genetic 
operators.  

Algorithm 1. Main stressed GA (GML-2SGA) 
begin 
   Initialize the Pareto Front 
   repeat 

Initialize the diversity parameters 
Choose an initial population 
Calculate the number of edges and the fitness of   
each model 
repeat 

Perform truncation selection for the population 
i 
Perform M-step crossover or mutation 
Calculate the number of edges and the fitness 
of each model 

 Actualize the Pareto front 
until (Some stopping criterion applies (k 

populations)) 
   until (Multi-start parameters combination are over) 
end 
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6.2 The M step Crossover and Mutation Operators  

The hybridized crossover and mutation operators include an M-Step. They leave the 
class of graphical Markov models closed, and conserve (specially the crossover 
operator) the heritability of the common interaction structures of the parents.  

Algorithm 2.  M-Step crossover algorithm 
begin 
   Select  X, Y from Pop 
   repeat 
       Z crossover(X, Y) 
       δE(Z|X,Y) E(Z)-E(X,Y) 
       U rand(0,1) 
       if (U< min{1,exp(-δE(Z|X,Y))}) then Pop Z 
   until (Some stopping criteria applies) 
end 

Algorithm 3.  M-Step mutation algorithm 
begin 
   Select  X from Pop 
   repeat 
      Z mutation(X) 
      δE(Z|X) E(Z)-E(X) 
      U rand(0,1) 
      if (U< min{1,exp(-δE(Z|X))}) then Pop Z 
   until (some stopping criteria applies) 
end 

Algorithm 4.  M-step crossover or mutation 
begin 

With probability p select two parents: obtain an     
offspring by crossover 
Assess the offspring fitness 
if (The offspring is not dominated by one of the 

fathers)  
then Add it to the new population 
else Add it to the new population with M step  

criterion for crossover 
With probability 1-p select one parent: with 
probability q take one edge out 
Assess the offspring fitness 
if (The child is not dominated by the father)  

then Add it to the new population 
else Add it to the new population with M step 

criterion for mutation 
With probability 1- q: put one edge in  
Assess the offspring fitness 
if (The child is not dominated by the father) 

then Add it to the new population 
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else Add it to the new population with M step 
criterion for mutation 

end 

6.3 Algorithm Components Description 

Multi-start estates: The parameter combinations of the genetic algorithm are used as 
diversity factors. They are: τ % of individuals selected to reproduce (25, 50); p % of 
individuals selected to mutate (25, 45). Parameter of the convex index (0.60, 0.45) 
Initial population: We form the initial population taking one edge out from the 
saturated model. To attain this objective the Nabla menus operator is used. Then, ξ % 
of the best evaluated models is taken to begin the genetic algorithm. 

 Fitting: The convex fitting criterion acts as the genetic algorithm fitness. 
 The Pareto front: for each number of edges, the best adjusted model is saved at 

each population of the genetic algorithm. 
 In a random fashion the algorithm decides to do crossover with probability p or 

mutation with probability 1- p. The crossover operation of two models is defined by 
the binary intersection operator. 

 The mutation operator could take one edge out at random with probability 0.7 
(using the operator Nabla menus) or put an edge in (using the operator Nabla plus) at 
random with probability 0.3. 

7   Experimental Design 

To compare the two algorithms with models of different complexities [8], an 
experiment was designed and run. A conditional independence restrictions structure 
was selected at random of the type dense, mean and sparse. The structures are defined 
by its cliques (See table 2). To asses the performance of the algorithms, simulated 
samples from known models of 10 and 12 variables, sparse, medium and dense (see 
Table 2), are generated with a Markov Structure Random Sampler (MSRS) presented 
in [7].   

Each algorithm is run 6 times with each type of model. The experiment and the 
algorithm is programmed in C++ and executed in a Pentium IV PC at 1.6 MHz. 

 
Table 1. Starting values 

Per cent 
selected to 
reproduce 

Per cent to mutate Convex fitting 
index parameter 

25 25 0.60 
50 45 0.45 
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8   Results and Discussion 

The mean execution time of the algorithm proposed in this paper is ≤ 5.12 minutes for 
10 variables, and ≤ 14.28 minutes for 12 variables in C++, over a PC at 1.6 GHz. The 
sparse models are more difficult to identify because they have few edges, and are 
immersed in a huge space like a “Needle in a Haystack”. The mean execution time for 
dense models is 21 seconds more than for medium models in the case of 10 variables, 
and 3.87 minutes more in the case 12 variables, indicating that the complexity of the 
models make the computations time longer. Some explanation for that could be that 
the independent sample sizes are not enough to produce convergence in more 
complex models. 

The performance of the GML-2SGA algorithm is better than the performance of 
the GMS-MGA, in the case of the sparse and the medium models, in the case of the 
dense model the performance are essentially the same (See Table No. 2).  

 
Table 2. GMS-MGA vs. GML-2SGA 

M 
O 
D 
E 
L 
S 

MODEL’S MAXIMAL CLIQUES 
 

GMS-
MGA 
Correct  
Cliques  
Mean 

 

GML-
2SGA 
Correct  
Cliques  
Mean 

 

Mean  
Run 
time 

 

10 VAR. 
SPARSE 

AB BC CD DE EF FG GH HI  IJ  
(9 cliques) 

6.65 7.35 5 min. 

10 VAR. 
MEDIUM 

ABC CDE EFG GHI  JA 
(5 cliques) 

3.95 4.92 
 

4.91 
min. 

10 VAR. 
DENSE 

ABCD DEFG FGHI  HIJA 
(4 cliques) 

2.75 2.75 5.12 
min. 

12 VAR. 
SPARSE 

AB BC CD DE EF FG GH HI  IJ JK 
KL              (11 cliques) 

9.43 10.12 11.71 
min. 

12 VAR. 
MEDIUM 

ABC CDE EFG GHI IJK   JKL   
(6 cliques) 

4.11 5.83 

 

10.41 
min. 

12 VAR. 
DENSE 

ABCD DEFG FGHI  HIJK IJKL 
(5 cliques) 

3.98 4.27 14.28 
min. 
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9   Conclusions and Recommendations 

The sparse models are more difficult to identify because they have few edges, and are 
immersed in a huge space like a “Needle in a Haystack”. The GML-2SGA for binary 
variables has a better performance than the GMS-MGA because the sparse models are 
not more difficult to determine than the medium and dense ones as was the case with 
the GMS-MGA. The medium complexity models are almost always completely 
determined. The execution mean run time grows with the number of nodes (variables) 
in the model and with the complexity (sparse, medium, and dense) of the graphical 
model.  
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